Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission.

Optogenetic silencing using light-driven ion fluxes permits rapid and effective inhibition of neural activity. Using rodent hippocampal neurons, we found that silencing activity with a chloride pump can increase the probability of synaptically evoked spiking after photoactivation; this did not occur...

Cur síos iomlán

Sonraí bibleagrafaíochta
Príomhchruthaitheoirí: Raimondo, J, Kay, L, Ellender, T, Akerman, C
Formáid: Journal article
Teanga:English
Foilsithe / Cruthaithe: 2012
Cur síos
Achoimre:Optogenetic silencing using light-driven ion fluxes permits rapid and effective inhibition of neural activity. Using rodent hippocampal neurons, we found that silencing activity with a chloride pump can increase the probability of synaptically evoked spiking after photoactivation; this did not occur with a proton pump. This effect can be accounted for by changes to the GABA(A) receptor reversal potential and demonstrates an important difference between silencing strategies.