Deep tracking in the wild: End-to-end tracking using recurrent neural networks
This paper presents a novel approach for tracking static and dynamic objects for an autonomous vehicle operating in complex urban environments. Whereas traditional approaches for tracking often feature numerous hand-engineered stages, this method is learned end-to-end and can directly predict a full...
Κύριοι συγγραφείς: | Dequaire, J, Ondrúška, P, Rao, D, Wang, D, Posner, H |
---|---|
Μορφή: | Journal article |
Έκδοση: |
SAGE Publications
2017
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
End-to-end tracking and semantic segmentation using recurrent neural networks
ανά: Ondruska, P, κ.ά.
Έκδοση: (2016) -
DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks
ανά: Wang, S, κ.ά.
Έκδοση: (2017) -
End‐to‐end feature fusion Siamese network for adaptive visual tracking
ανά: Dongyan Guo, κ.ά.
Έκδοση: (2021-01-01) -
Off the beaten track: predicting localisation performance in visual teach and repeat
ανά: Dequaire, J, κ.ά.
Έκδοση: (2018) -
Deep Reinforcement Learning-Based End-to-End Control for UAV Dynamic Target Tracking
ανά: Jiang Zhao, κ.ά.
Έκδοση: (2022-11-01)