Deep tracking in the wild: End-to-end tracking using recurrent neural networks
This paper presents a novel approach for tracking static and dynamic objects for an autonomous vehicle operating in complex urban environments. Whereas traditional approaches for tracking often feature numerous hand-engineered stages, this method is learned end-to-end and can directly predict a full...
Asıl Yazarlar: | Dequaire, J, Ondrúška, P, Rao, D, Wang, D, Posner, H |
---|---|
Materyal Türü: | Journal article |
Baskı/Yayın Bilgisi: |
SAGE Publications
2017
|
Benzer Materyaller
-
End-to-end tracking and semantic segmentation using recurrent neural networks
Yazar:: Ondruska, P, ve diğerleri
Baskı/Yayın Bilgisi: (2016) -
DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks
Yazar:: Wang, S, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
End‐to‐end feature fusion Siamese network for adaptive visual tracking
Yazar:: Dongyan Guo, ve diğerleri
Baskı/Yayın Bilgisi: (2021-01-01) -
Off the beaten track: predicting localisation performance in visual teach and repeat
Yazar:: Dequaire, J, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
Deep Reinforcement Learning-Based End-to-End Control for UAV Dynamic Target Tracking
Yazar:: Jiang Zhao, ve diğerleri
Baskı/Yayın Bilgisi: (2022-11-01)