Exigent examiner and mean teacher: an advanced 3D CNN-based semi-supervised brain tumor segmentation framework
With the rise of deep learning applications to medical imaging, there has been a growing appetite for large and well-annotated datasets, yet annotation is time-consuming and hard to come by. In this work, we train a 3D semantic segmentation model in an advanced semi-supervised learning fashion. The...
Hlavní autoři: | Wang, Z, Voiculescu, ID |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
Springer
2023
|
Podobné jednotky
-
Application of semi-supervised Mean Teacher to rock image segmentation
Autor: Jiashan Li, a další
Vydáno: (2025-01-01) -
An uncertainty-aware transformer for MRI cardiac semantic segmentation via mean teachers
Autor: Wang, Z, a další
Vydáno: (2022) -
Semi-Supervised Skin Lesion Segmentation With Coupling CNN and Transformer Features
Autor: Mohammad D. Alahmadi, a další
Vydáno: (2022-01-01) -
A Semi-Supervised CNN With Fuzzy Rough C-Mean for Image Classification
Autor: Saman Riaz, a další
Vydáno: (2019-01-01) -
MTANS: Multi-Scale Mean Teacher Combined Adversarial Network with Shape-Aware Embedding for Semi-Supervised Brain Lesion Segmentation
Autor: Gaoxiang Chen, a další
Vydáno: (2021-12-01)