Adaptive Aggregation of Markov Chains: Quantitative Analysis of Chemical Reaction Networks
Quantitative analysis of Markov models typically proceeds through numerical methods or simulation-based evaluation. Since the state space of the models can often be large, exact or approximate state aggregation methods (such as lumping or bisimulation reduction) have been proposed to improve the sca...
Autores principales: | Abate, A, Brim, L, Ceska, M, Kwiatkowska, M |
---|---|
Formato: | Conference item |
Lenguaje: | English |
Publicado: |
2015
|
Ejemplares similares
-
Approximate policy iteration for Markov decision processes via quantitative adaptive aggregations
por: Abate, A, et al.
Publicado: (2016) -
Adaptive formal approximations of Markov chains
por: Abate, A, et al.
Publicado: (2021) -
Designing robust software systems through parametric markov chain synthesis
por: Kwiatkowska, M, et al.
Publicado: (2017) -
Syntax-guided optimal synthesis for chemical reaction networks
por: Cardelli, L, et al.
Publicado: (2017) -
Exploring Parameter Space of Stochastic Biochemical Systems Using Quantitative Model Checking
por: Brim, L, et al.
Publicado: (2013)