Adaptive Aggregation of Markov Chains: Quantitative Analysis of Chemical Reaction Networks
Quantitative analysis of Markov models typically proceeds through numerical methods or simulation-based evaluation. Since the state space of the models can often be large, exact or approximate state aggregation methods (such as lumping or bisimulation reduction) have been proposed to improve the sca...
主要な著者: | Abate, A, Brim, L, Ceska, M, Kwiatkowska, M |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
2015
|
類似資料
-
Approximate policy iteration for Markov decision processes via quantitative adaptive aggregations
著者:: Abate, A, 等
出版事項: (2016) -
Adaptive formal approximations of Markov chains
著者:: Abate, A, 等
出版事項: (2021) -
Designing robust software systems through parametric markov chain synthesis
著者:: Kwiatkowska, M, 等
出版事項: (2017) -
Syntax-guided optimal synthesis for chemical reaction networks
著者:: Cardelli, L, 等
出版事項: (2017) -
Exploring Parameter Space of Stochastic Biochemical Systems Using Quantitative Model Checking
著者:: Brim, L, 等
出版事項: (2013)