Adaptive Aggregation of Markov Chains: Quantitative Analysis of Chemical Reaction Networks
Quantitative analysis of Markov models typically proceeds through numerical methods or simulation-based evaluation. Since the state space of the models can often be large, exact or approximate state aggregation methods (such as lumping or bisimulation reduction) have been proposed to improve the sca...
Главные авторы: | Abate, A, Brim, L, Ceska, M, Kwiatkowska, M |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
2015
|
Схожие документы
-
Approximate policy iteration for Markov decision processes via quantitative adaptive aggregations
по: Abate, A, и др.
Опубликовано: (2016) -
Adaptive formal approximations of Markov chains
по: Abate, A, и др.
Опубликовано: (2021) -
Designing robust software systems through parametric markov chain synthesis
по: Kwiatkowska, M, и др.
Опубликовано: (2017) -
Syntax-guided optimal synthesis for chemical reaction networks
по: Cardelli, L, и др.
Опубликовано: (2017) -
Exploring Parameter Space of Stochastic Biochemical Systems Using Quantitative Model Checking
по: Brim, L, и др.
Опубликовано: (2013)