Separating the “chirp” from the “chat”: self-supervised visual grounding of sound and language
We present DenseAV, a novel dual encoder grounding architecture that learns high-resolution, semantically meaningful, and audio-visual aligned features solely through watching videos. We show that DenseAV can discover the “meaning” of words and the “location” of sounds without explicit localization...
Hlavní autoři: | Hamilton, M, Zisserman, A, Hershey, JR, Freeman, WT |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
IEEE
2024
|
Podobné jednotky
-
Multi-task self-supervised visual learning
Autor: Doersch, C, a další
Vydáno: (2017) -
Ambient Sound Provides Supervision for Visual Learning
Autor: Owens, Andrew Hale, a další
Vydáno: (2017) -
Learning Sight from Sound: Ambient Sound Provides Supervision for Visual Learning
Autor: Owens, Andrew, a další
Vydáno: (2021) -
Self-Supervised Learning for Audio-Visual Relationships of Videos With Stereo Sounds
Autor: Tomoya Sato, a další
Vydáno: (2022-01-01) -
Self-supervised learning of audio-visual objects from video
Autor: Afouras, T, a další
Vydáno: (2020)