Separating the “chirp” from the “chat”: self-supervised visual grounding of sound and language
We present DenseAV, a novel dual encoder grounding architecture that learns high-resolution, semantically meaningful, and audio-visual aligned features solely through watching videos. We show that DenseAV can discover the “meaning” of words and the “location” of sounds without explicit localization...
Главные авторы: | Hamilton, M, Zisserman, A, Hershey, JR, Freeman, WT |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
IEEE
2024
|
Схожие документы
-
Multi-task self-supervised visual learning
по: Doersch, C, и др.
Опубликовано: (2017) -
Ambient Sound Provides Supervision for Visual Learning
по: Owens, Andrew Hale, и др.
Опубликовано: (2017) -
Learning Sight from Sound: Ambient Sound Provides Supervision for Visual Learning
по: Owens, Andrew, и др.
Опубликовано: (2021) -
Self-Supervised Learning for Audio-Visual Relationships of Videos With Stereo Sounds
по: Tomoya Sato, и др.
Опубликовано: (2022-01-01) -
Self-supervised learning of audio-visual objects from video
по: Afouras, T, и др.
Опубликовано: (2020)