Root growth: homogenization in domains with time dependent partial perforations

In this article we derive a macroscopic model for the time evolution of root density, starting from a discrete mesh of roots, using homogenization techniques. In the microscopic model each root grows vertically according to an ordinary differential equation. The roots growth rates depend on the spat...

全面介绍

书目详细资料
Main Authors: Capdeboscq, Y, Ptashnyk, M
格式: Journal article
语言:English
出版: EDP Sciences 2012
实物特征
总结:In this article we derive a macroscopic model for the time evolution of root density, starting from a discrete mesh of roots, using homogenization techniques. In the microscopic model each root grows vertically according to an ordinary differential equation. The roots growth rates depend on the spatial distribution of nutrient in the soil, which also evolves in time, leading to a fully coupled non-linear problem. We derive an effective partial differential equation for the root tip surface and for the nutrient density. Copyright 2011 EDP Sciences, SMAI.