Torsion in the knot concordance group and cabling
We define a nontrivial modulo 2 valued additive concordance invariant defined on the torsion subgroup of the knot concordance group using involutive knot Floer package. For knots not contained in its kernel, we prove that their iterated (odd,1)-cables have infinite order in the concordance group and...
Hoofdauteurs: | Kang, S, Park, J |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
EMS Press
2024
|
Gelijkaardige items
-
Primary decomposition in the smooth concordance group of topologically slice knots
door: Jae Choon Cha
Gepubliceerd in: (2021-01-01) -
Instantons and some concordance invariants of knots
door: Kronheimer, PB, et al.
Gepubliceerd in: (2022) -
Concordance maps in knot Floer homology
door: Juhász, A, et al.
Gepubliceerd in: (2016) -
Instantons and some concordance invariants of knots
door: Kronheimer, PB, et al.
Gepubliceerd in: (2021) -
Doubly slice knots and obstruction to Lagrangian concordance
door: Chantraine, Baptiste, et al.
Gepubliceerd in: (2023-11-01)