Simple and scalable constrained clustering: a generalized spectral method
We present a simple spectral approach to the well-studied constrained clustering problem. It captures constrained clustering as a generalized eigenvalue problem with graph Laplacians. The algorithm works in nearly-linear time and provides concrete guarantees for the quality of the clusters, at least...
第一著者: | Cucuringu, M |
---|---|
フォーマット: | Conference item |
出版事項: |
Microtome Publishing
2016
|
類似資料
-
Ultra-scalable spectral clustering and ensemble clustering
著者:: Huang, Dong, 等
出版事項: (2020) -
Motif-based spectral clustering of weighted directed networks
著者:: Underwood, WG, 等
出版事項: (2020) -
Motif-based spectral clustering of weighted directed networks
著者:: William G. Underwood, 等
出版事項: (2020-09-01) -
Coherency-Constrained Spectral Clustering for Power Network Reduction
著者:: Mario D. Baquedano-Aguilar, 等
出版事項: (2025-01-01) -
SPONGE: A generalized eigenproblem for clustering signed networks
著者:: Cucuringu, M, 等
出版事項: (2019)