Inference on Markov random fields: methods and applications
<p>This thesis considers the problem of performing inference on undirected graphical models with continuous state spaces. These models represent conditional independence structures that can appear in the context of Bayesian Machine Learning. In the thesis, we focus on computational methods and...
1. Verfasser: | Lienart, T |
---|---|
Weitere Verfasser: | Doucet, A |
Format: | Abschlussarbeit |
Sprache: | English |
Veröffentlicht: |
2017
|
Schlagworte: |
Ähnliche Einträge
-
Neural networks for inference, inference for neural networks
von: Webb, S
Veröffentlicht: (2018) -
Piecewise-deterministic Markov chain Monte Carlo
von: Vanetti, P
Veröffentlicht: (2019) -
Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions
von: Samuel Livingstone, et al.
Veröffentlicht: (2014-06-01) -
Bayesian inference with geodetic applications /
von: 253571 Koch, Karl-Rudolf, et al.
Veröffentlicht: (1990) -
The predictive view of Bayesian inference
von: Fong, CHE
Veröffentlicht: (2021)