Inference on Markov random fields: methods and applications

<p>This thesis considers the problem of performing inference on undirected graphical models with continuous state spaces. These models represent conditional independence structures that can appear in the context of Bayesian Machine Learning. In the thesis, we focus on computational methods and...

Description complète

Détails bibliographiques
Auteur principal: Lienart, T
Autres auteurs: Doucet, A
Format: Thèse
Langue:English
Publié: 2017
Sujets:

Documents similaires