Inference on Markov random fields: methods and applications
<p>This thesis considers the problem of performing inference on undirected graphical models with continuous state spaces. These models represent conditional independence structures that can appear in the context of Bayesian Machine Learning. In the thesis, we focus on computational methods and...
第一著者: | Lienart, T |
---|---|
その他の著者: | Doucet, A |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
2017
|
主題: |
類似資料
-
Neural networks for inference, inference for neural networks
著者:: Webb, S
出版事項: (2018) -
Piecewise-deterministic Markov chain Monte Carlo
著者:: Vanetti, P
出版事項: (2019) -
Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions
著者:: Samuel Livingstone, 等
出版事項: (2014-06-01) -
Bayesian inference with geodetic applications /
著者:: 253571 Koch, Karl-Rudolf, 等
出版事項: (1990) -
The predictive view of Bayesian inference
著者:: Fong, CHE
出版事項: (2021)