Inference on Markov random fields: methods and applications
<p>This thesis considers the problem of performing inference on undirected graphical models with continuous state spaces. These models represent conditional independence structures that can appear in the context of Bayesian Machine Learning. In the thesis, we focus on computational methods and...
Hoofdauteur: | Lienart, T |
---|---|
Andere auteurs: | Doucet, A |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
2017
|
Onderwerpen: |
Gelijkaardige items
-
Neural networks for inference, inference for neural networks
door: Webb, S
Gepubliceerd in: (2018) -
Piecewise-deterministic Markov chain Monte Carlo
door: Vanetti, P
Gepubliceerd in: (2019) -
Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions
door: Samuel Livingstone, et al.
Gepubliceerd in: (2014-06-01) -
Bayesian inference with geodetic applications /
door: 253571 Koch, Karl-Rudolf, et al.
Gepubliceerd in: (1990) -
The predictive view of Bayesian inference
door: Fong, CHE
Gepubliceerd in: (2021)