Inference on Markov random fields: methods and applications
<p>This thesis considers the problem of performing inference on undirected graphical models with continuous state spaces. These models represent conditional independence structures that can appear in the context of Bayesian Machine Learning. In the thesis, we focus on computational methods and...
Главный автор: | Lienart, T |
---|---|
Другие авторы: | Doucet, A |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
2017
|
Предметы: |
Схожие документы
-
Neural networks for inference, inference for neural networks
по: Webb, S
Опубликовано: (2018) -
Piecewise-deterministic Markov chain Monte Carlo
по: Vanetti, P
Опубликовано: (2019) -
Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions
по: Samuel Livingstone, и др.
Опубликовано: (2014-06-01) -
Bayesian inference with geodetic applications /
по: 253571 Koch, Karl-Rudolf, и др.
Опубликовано: (1990) -
The predictive view of Bayesian inference
по: Fong, CHE
Опубликовано: (2021)