Inference on Markov random fields: methods and applications
<p>This thesis considers the problem of performing inference on undirected graphical models with continuous state spaces. These models represent conditional independence structures that can appear in the context of Bayesian Machine Learning. In the thesis, we focus on computational methods and...
Yazar: | Lienart, T |
---|---|
Diğer Yazarlar: | Doucet, A |
Materyal Türü: | Tez |
Dil: | English |
Baskı/Yayın Bilgisi: |
2017
|
Konular: |
Benzer Materyaller
-
Neural networks for inference, inference for neural networks
Yazar:: Webb, S
Baskı/Yayın Bilgisi: (2018) -
Piecewise-deterministic Markov chain Monte Carlo
Yazar:: Vanetti, P
Baskı/Yayın Bilgisi: (2019) -
Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions
Yazar:: Samuel Livingstone, ve diğerleri
Baskı/Yayın Bilgisi: (2014-06-01) -
Bayesian inference with geodetic applications /
Yazar:: 253571 Koch, Karl-Rudolf, ve diğerleri
Baskı/Yayın Bilgisi: (1990) -
The predictive view of Bayesian inference
Yazar:: Fong, CHE
Baskı/Yayın Bilgisi: (2021)