Groups of Lie type as products of SL2 subgroups
We prove that apart from the Suzuki groups, every finite simple group of Lie type of rank r over a field of q elements can be written as a product of C(r) subgroups isomorphic to SL2(q) or PSL2(q), where C(r) is a quadratic function. This has an application to the theory of expander graphs. © 2009 E...
Hlavní autoři: | Liebeck, M, Nikolov, N, Shalev, A |
---|---|
Médium: | Journal article |
Vydáno: |
2011
|
Podobné jednotky
-
Product decompositions in finite simple groups
Autor: Liebeck, M, a další
Vydáno: (2011) -
Subgroup growth of lattices in semisimple Lie groups
Autor: Lubotzky, A, a další
Vydáno: (2004) -
Character bounds for finite groups of Lie type
Autor: Bezrukavnikov, Roman, a další
Vydáno: (2021) -
A conjecture on product decompositions in simple groups
Autor: Liebeck, M, a další
Vydáno: (2010) -
Discrete subgroups of lie groups/
Autor: 189539 Raghunathan, M. S.
Vydáno: (1972)