Groups of Lie type as products of SL2 subgroups
We prove that apart from the Suzuki groups, every finite simple group of Lie type of rank r over a field of q elements can be written as a product of C(r) subgroups isomorphic to SL2(q) or PSL2(q), where C(r) is a quadratic function. This has an application to the theory of expander graphs. © 2009 E...
主要な著者: | Liebeck, M, Nikolov, N, Shalev, A |
---|---|
フォーマット: | Journal article |
出版事項: |
2011
|
類似資料
-
Product decompositions in finite simple groups
著者:: Liebeck, M, 等
出版事項: (2011) -
Subgroup growth of lattices in semisimple Lie groups
著者:: Lubotzky, A, 等
出版事項: (2004) -
Character bounds for finite groups of Lie type
著者:: Bezrukavnikov, Roman, 等
出版事項: (2021) -
A conjecture on product decompositions in simple groups
著者:: Liebeck, M, 等
出版事項: (2010) -
Discrete subgroups of lie groups/
著者:: 189539 Raghunathan, M. S.
出版事項: (1972)