A transient search using combined human and machine classifications
Large modern surveys require efficient review of data in order to find transient sources such as supernovae, and to distinguish such sources from artefacts and noise. Much effort has been put into the development of automatic algorithms, but surveys still rely on human review of targets. This paper...
Auteurs principaux: | Wright, DE, Lintott, CJ, Smartt, SJ, Smith, KW, Fortson, L, Trouille, L, Allen, CR, Beck, M, Bouslog, MC, Boyer, A, Chambers, KC, Flewelling, H, Granger, W, Magnier, EA, McMaster, A, Miller, GRM, O'Donnell, JE, Simmons, B, Spiers, HR, Tonry, JL, Veldthuis, M, Wainscoat, RJ, Waters, C, Willman, M, Wolfenbarger, Z, Young, DR |
---|---|
Format: | Journal article |
Publié: |
Oxford University Press
2017
|
Documents similaires
-
Disaster, infrastructure and participatory knowledge: the Planetary Response Network
par: Simmons, BD, et autres
Publié: (2022) -
Citizen science frontiers: Efficiency, engagement, and serendipitous discovery with human–machine systems
par: Trouille, L, et autres
Publié: (2019) -
Everyone counts? Design considerations in online citizen science
par: Spiers, H, et autres
Publié: (2019) -
Disaster, Infrastructure and Participatory Knowledge: The Planetary Response Network
par: Brooke D. Simmons, et autres
Publié: (2022-05-01) -
Planet Hunters TESS II: Findings from the first two years of TESS
par: Eisner, NL, et autres
Publié: (2020)