Online variational filtering and parameter learning

We present a variational method for online state estimation and parameter learning in state-space models (SSMs), a ubiquitous class of latent variable models for sequential data. As per standard batch variational techniques, we use stochastic gradients to simultaneously optimize a lower bound on the...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsmän: Campbell, A, Shi, Y, Rainforth, T, Doucet, A
Materialtyp: Conference item
Språk:English
Publicerad: Curran Associates 2022