Online variational filtering and parameter learning
We present a variational method for online state estimation and parameter learning in state-space models (SSMs), a ubiquitous class of latent variable models for sequential data. As per standard batch variational techniques, we use stochastic gradients to simultaneously optimize a lower bound on the...
Auteurs principaux: | Campbell, A, Shi, Y, Rainforth, T, Doucet, A |
---|---|
Format: | Conference item |
Langue: | English |
Publié: |
Curran Associates
2022
|
Documents similaires
-
Filtering variational objectives
par: Maddison, C, et autres
Publié: (2017) -
Variational Online Learning Correlation Filter for Visual Tracking
par: Zhongyang Wang, et autres
Publié: (2024-06-01) -
Robust inference on parameters via particle filters and sandwich covariance matrices.
par: Shephard, N, et autres
Publié: (2012) -
Robust inference on parameters via particle filters and sandwich covariance matrices
par: Shephard, N, et autres
Publié: (2012) -
Online parameter estimation for partially observed diffusions
par: Poyiadjis, G, et autres
Publié: (2006)