Semi-supervised kernel canonical correlation analysis with application to human fMRI

<p>Kernel canonical correlation analysis (KCCA) is a general technique for subspace learning that incorporates principal components analysis (PCA) and Fisher linear discriminant analysis (LDA) as special cases. By finding directions that maximize correlation, KCCA learns representations that a...

Descrizione completa

Dettagli Bibliografici
Autori principali: Blaschko, M, Shelton, J, Bartels, A, Lampert, C, Gretton, A
Altri autori: International Association for Pattern Recognition
Natura: Journal article
Lingua:English
Pubblicazione: Elsevier 2011
Soggetti: