Sequential Monte Carlo Methods to Train Neural Network Models
We discuss a novel strategy for training neural networks using sequential Monte Carlo algorithms and propose a new hybrid gradient descent / sampling importance resampling algorithm (HySIR). In terms of computational time and accuracy, the hybrid SIR is a clear improvement over conventional sequenti...
Κύριοι συγγραφείς: | Freitas, D, Nando, Niranjan, M, Gee, A, Doucet, A |
---|---|
Μορφή: | Journal article |
Έκδοση: |
2000
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Sequential monte carlo methods To train neural network models
ανά: , d, κ.ά.
Έκδοση: (2000) -
Sequential Monte Carlo methods for diffusion processes
ανά: Jasra, A, κ.ά.
Έκδοση: (2009) -
Sequential Monte Carlo samplers
ανά: Del Moral, P, κ.ά.
Έκδοση: (2006) -
Sequential Monte Carlo for model selection and estimation of neural networks
ανά: Andrieu, C, κ.ά.
Έκδοση: (2000) -
Controlled sequential Monte Carlo
ανά: Heng, J, κ.ά.
Έκδοση: (2020)