Sequential Monte Carlo Methods to Train Neural Network Models
We discuss a novel strategy for training neural networks using sequential Monte Carlo algorithms and propose a new hybrid gradient descent / sampling importance resampling algorithm (HySIR). In terms of computational time and accuracy, the hybrid SIR is a clear improvement over conventional sequenti...
Asıl Yazarlar: | Freitas, D, Nando, Niranjan, M, Gee, A, Doucet, A |
---|---|
Materyal Türü: | Journal article |
Baskı/Yayın Bilgisi: |
2000
|
Benzer Materyaller
-
Sequential monte carlo methods To train neural network models
Yazar:: , d, ve diğerleri
Baskı/Yayın Bilgisi: (2000) -
Sequential Monte Carlo methods for diffusion processes
Yazar:: Jasra, A, ve diğerleri
Baskı/Yayın Bilgisi: (2009) -
Sequential Monte Carlo samplers
Yazar:: Del Moral, P, ve diğerleri
Baskı/Yayın Bilgisi: (2006) -
Sequential Monte Carlo for model selection and estimation of neural networks
Yazar:: Andrieu, C, ve diğerleri
Baskı/Yayın Bilgisi: (2000) -
Controlled sequential Monte Carlo
Yazar:: Heng, J, ve diğerleri
Baskı/Yayın Bilgisi: (2020)