Oracle inequalities for high dimensional vector autoregressions
<p style="text-align:justify;"> This paper establishes non-asymptotic oracle inequalities for the prediction error and estimation accuracy of the LASSO in stationary vector autoregressive models. These inequalities are used to establish consistency of the LASSO even when the number...
Κύριοι συγγραφείς: | Kock, A, Callot, L |
---|---|
Μορφή: | Journal article |
Έκδοση: |
Elsevier
2015
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models
ανά: Kock, A
Έκδοση: (2016) -
Oracle inequalities for convex loss functions with nonlinear targets
ανά: Caner, M, κ.ά.
Έκδοση: (2015) -
Oracle inequalities for weighted group lasso in high-dimensional misspecified Cox models
ανά: Yijun Xiao, κ.ά.
Έκδοση: (2020-11-01) -
Sharp threshold detection based on sup-norm error rates in high-dimensional models
ανά: Callot, L, κ.ά.
Έκδοση: (2017) -
Stable Recovery of Sparse Signals and an Oracle Inequality
ανά: Cai, T. Tony, κ.ά.
Έκδοση: (2011)