Beyond quantifier-free interpolation in extensions of presburger arithmetic

Craig interpolation has emerged as an effective means of generating candidate program invariants. We present interpolation procedures for the theories of Presburger arithmetic combined with (i) uninterpreted predicates (QPA+UP), (ii) uninterpreted functions (QPA+UF) and (iii) extensional arrays (QPA...

Fuld beskrivelse

Bibliografiske detaljer
Main Authors: Brillout, A, Kroening, D, Rümmer, P, Wahl, T
Andre forfattere: Jhala, R
Format: Conference item
Udgivet: Springer 2011
Beskrivelse
Summary:Craig interpolation has emerged as an effective means of generating candidate program invariants. We present interpolation procedures for the theories of Presburger arithmetic combined with (i) uninterpreted predicates (QPA+UP), (ii) uninterpreted functions (QPA+UF) and (iii) extensional arrays (QPA+AR). We prove that none of these combinations can be effectively interpolated without the use of quantifiers, even if the input formulae are quantifier-free. We go on to identify fragments of QPA+UP and QPA+UF with restricted forms of guarded quantification that are closed under interpolation. Formulae in these fragments can easily be mapped to quantifier-free expressions with integer division. For QPA+AR, we formulate a sound interpolation procedure that potentially produces interpolants with unrestricted quantifiers.