Hypergraph cuts above the average
An r-cut of a k-uniform hypergraph H is a partition of the vertex set of H into r parts and the size of the cut is the number of edges which have a vertex in each part. A classical result of Edwards says that every m-edge graph has a 2-cut of size m/2+Ω)(m−−√) and this is best possible. That is, the...
主要な著者: | Conlon, D, Fox, J, Kwan, M, Sudakov, B |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Hebrew University Magnes Press
2019
|
類似資料
-
Erdos–Hajnal-type theorems in hypergraphs
著者:: Conlon, David, 等
出版事項: (2015) -
Quasirandomness in hypergraphs
著者:: Aigner-Horev, E, 等
出版事項: (2017) -
Quasirandomness in hypergraphs
著者:: Aigner-Horev, E, 等
出版事項: (2018) -
Hypergraph expanders from Cayley graphs
著者:: Conlon, D
出版事項: (2019) -
Hypergraph cuts with edge-dependent vertex weights
著者:: Yu Zhu, 等
出版事項: (2022-07-01)