Enabling feature-level interpretability in non-linear latent variable models: a synthesis of statistical and machine learning techniques
<p>Gaining insights into complex high-dimensional data is challenging and typically requires the use of dimensionality reduction methods. These methods let us identify low-dimensional structures embedded within the data that may reveal patterns of interest. In probabilistic models, such low-di...
Päätekijä: | |
---|---|
Muut tekijät: | |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
2019
|
Aiheet: |