Stochastic control approach to the multi-armed bandit problems
<p>A multi-armed bandit is the simplest problem to study learning under uncertainty when decisions affect information. A standard approach to the multi-armed bandit often gives a heuristic construction of an algorithm and proves its regret bound. Following a constructive approach, it is often...
Tác giả chính: | Treetanthiploet, T |
---|---|
Tác giả khác: | Cohen, S |
Định dạng: | Luận văn |
Ngôn ngữ: | English |
Được phát hành: |
2021
|
Những chủ đề: |
Những quyển sách tương tự
-
Client Selection for Generalization in Accelerated Federated Learning: A Multi-Armed Bandit Approach
Bằng: Dan Ben Ami, et al.
Được phát hành: (2025-01-01) -
An Analysis of the Value of Information When Exploring Stochastic, Discrete Multi-Armed Bandits
Bằng: Isaac J. Sledge, et al.
Được phát hành: (2018-02-01) -
Output-weighted sampling for multi-armed bandits with extreme payoffs
Bằng: Yang, Yibo, et al.
Được phát hành: (2024) -
Risk-aware multi-armed bandit problem with application to portfolio selection
Bằng: Xiaoguang Huo, et al.
Được phát hành: (2017-01-01) -
Multi-Armed Bandits in Brain-Computer Interfaces
Bằng: Frida Heskebeck, et al.
Được phát hành: (2022-07-01)