The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores.

A hydrophobic constriction site can act as an efficient barrier to ion and water permeation if its diameter is less than the diameter of an ion's first hydration shell. This hydrophobic gating mechanism is thought to operate in a number of ion channels, e.g. the nicotinic receptor, bacterial me...

Full description

Bibliographic Details
Main Authors: Beckstein, O, Sansom, MS
Format: Journal article
Language:English
Published: 2004
_version_ 1797062804812857344
author Beckstein, O
Sansom, MS
author_facet Beckstein, O
Sansom, MS
author_sort Beckstein, O
collection OXFORD
description A hydrophobic constriction site can act as an efficient barrier to ion and water permeation if its diameter is less than the diameter of an ion's first hydration shell. This hydrophobic gating mechanism is thought to operate in a number of ion channels, e.g. the nicotinic receptor, bacterial mechanosensitive channels (MscL and MscS) and perhaps in some potassium channels (e.g. KcsA, MthK and KvAP). Simplified pore models allow one to investigate the primary characteristics of a conduction pathway, namely its geometry (shape, pore length, and radius), the chemical character of the pore wall surface, and its local flexibility and surface roughness. Our extended (about 0.1 micros) molecular dynamic simulations show that a short hydrophobic pore is closed to water for radii smaller than 0.45 nm. By increasing the polarity of the pore wall (and thus reducing its hydrophobicity) the transition radius can be decreased until for hydrophilic pores liquid water is stable down to a radius comparable to a water molecule's radius. Ions behave similarly but the transition from conducting to non-conducting pores is even steeper and occurs at a radius of 0.65 nm for hydrophobic pores. The presence of water vapour in a constriction zone indicates a barrier for ion permeation. A thermodynamic model can explain the behaviour of water in nanopores in terms of the surface tensions, which leads to a simple measure of 'hydrophobicity' in this context. Furthermore, increased local flexibility decreases the permeability of polar species. An increase in temperature has the same effect, and we hypothesize that both effects can be explained by a decrease in the effective solvent-surface attraction which in turn leads to an increase in the solvent-wall surface free energy.
first_indexed 2024-03-06T20:50:49Z
format Journal article
id oxford-uuid:3782ad88-1d39-4fc2-b738-610225941769
institution University of Oxford
language English
last_indexed 2024-03-06T20:50:49Z
publishDate 2004
record_format dspace
spelling oxford-uuid:3782ad88-1d39-4fc2-b738-6102259417692022-03-26T13:44:27ZThe influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:3782ad88-1d39-4fc2-b738-610225941769EnglishSymplectic Elements at Oxford2004Beckstein, OSansom, MSA hydrophobic constriction site can act as an efficient barrier to ion and water permeation if its diameter is less than the diameter of an ion's first hydration shell. This hydrophobic gating mechanism is thought to operate in a number of ion channels, e.g. the nicotinic receptor, bacterial mechanosensitive channels (MscL and MscS) and perhaps in some potassium channels (e.g. KcsA, MthK and KvAP). Simplified pore models allow one to investigate the primary characteristics of a conduction pathway, namely its geometry (shape, pore length, and radius), the chemical character of the pore wall surface, and its local flexibility and surface roughness. Our extended (about 0.1 micros) molecular dynamic simulations show that a short hydrophobic pore is closed to water for radii smaller than 0.45 nm. By increasing the polarity of the pore wall (and thus reducing its hydrophobicity) the transition radius can be decreased until for hydrophilic pores liquid water is stable down to a radius comparable to a water molecule's radius. Ions behave similarly but the transition from conducting to non-conducting pores is even steeper and occurs at a radius of 0.65 nm for hydrophobic pores. The presence of water vapour in a constriction zone indicates a barrier for ion permeation. A thermodynamic model can explain the behaviour of water in nanopores in terms of the surface tensions, which leads to a simple measure of 'hydrophobicity' in this context. Furthermore, increased local flexibility decreases the permeability of polar species. An increase in temperature has the same effect, and we hypothesize that both effects can be explained by a decrease in the effective solvent-surface attraction which in turn leads to an increase in the solvent-wall surface free energy.
spellingShingle Beckstein, O
Sansom, MS
The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores.
title The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores.
title_full The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores.
title_fullStr The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores.
title_full_unstemmed The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores.
title_short The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores.
title_sort influence of geometry surface character and flexibility on the permeation of ions and water through biological pores
work_keys_str_mv AT becksteino theinfluenceofgeometrysurfacecharacterandflexibilityonthepermeationofionsandwaterthroughbiologicalpores
AT sansomms theinfluenceofgeometrysurfacecharacterandflexibilityonthepermeationofionsandwaterthroughbiologicalpores
AT becksteino influenceofgeometrysurfacecharacterandflexibilityonthepermeationofionsandwaterthroughbiologicalpores
AT sansomms influenceofgeometrysurfacecharacterandflexibilityonthepermeationofionsandwaterthroughbiologicalpores