Comparing two sequential Monte Carlo samplers for exact and approximate Bayesian inference on biological models
Bayesian methods are advantageous for biological modeling studies due to their ability to quantify and characterize posterior variability in model parameters. When Bayesian methods cannot be applied, due either to nondeterminism in the model or limitations on system observability, approximate Bayesi...
Автори: | Daly, A, Cooper, J, Gavaghan, D, Holmes, C |
---|---|
Формат: | Journal article |
Опубліковано: |
Royal Society
2017
|
Схожі ресурси
-
Sequential Monte Carlo samplers
за авторством: Del Moral, P, та інші
Опубліковано: (2006) -
Interacting sequential Monte Carlo samplers for trans-dimensional simulation
за авторством: Jasra, A, та інші
Опубліковано: (2008) -
Monte Carlo samplers for efficient network inference.
за авторством: Zeliha Kilic, та інші
Опубліковано: (2023-07-01) -
Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference.
за авторством: Bram Thijssen, та інші
Опубліковано: (2020-01-01) -
Evolutionary Sequential Monte Carlo Samplers for Change-Point Models
за авторством: Arnaud Dufays
Опубліковано: (2016-03-01)