Identifying precipitation uncertainty in crop modelling using Bayesian total error analysis
Precipitation is an important source of soil water, which is critical to crop growth, and is therefore an important input when modelling crop growth. Although advances are continually being made in predicting and recording precipitation, input uncertainty of precipitation data is likely to influence...
Hlavní autoři: | Huang, X, Ni, S, Yu, C, Hall, J, Zorn, C |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Elsevier
2018
|
Podobné jednotky
-
A new uncertainty estimation approach with multiple datasets and implementation for various precipitation products
Autor: X. Zhou, a další
Vydáno: (2020-04-01) -
Bayesian Inference for Correlations in the Presence of Measurement Error and Estimation Uncertainty
Autor: Dora Matzke, a další
Vydáno: (2017-10-01) -
On revision of the Guide to the Expression of Uncertainty in Measurement: Proofs of fundamental errors in Bayesian approaches
Autor: R. Willink
Vydáno: (2022-12-01) -
Quantifying input uncertainty in the calibration of water quality models: reordering errors via the secant method
Autor: X. Wu, a další
Vydáno: (2022-03-01) -
An Error-Pursuing Adaptive Uncertainty Analysis Method Based on Bayesian Support Vector Regression
Autor: Sheng-Tong Zhou, a další
Vydáno: (2023-02-01)