Black-box policy search with probabilistic programs

In this work we show how to represent policies as programs: that is, as stochastic simulators with tunable parameters. To learn the parameters of such policies we develop connections between black box variational inference and existing policy search approaches. We then explain how such learning can...

Descripció completa

Dades bibliogràfiques
Autors principals: Van De Meent, J, Paige, B, Tolpin, D, Wood, F
Format: Conference item
Publicat: Journal of Machine Learning Research 2016
Descripció
Sumari:In this work we show how to represent policies as programs: that is, as stochastic simulators with tunable parameters. To learn the parameters of such policies we develop connections between black box variational inference and existing policy search approaches. We then explain how such learning can be implemented in a probabilistic programming system. Using our own novel implementation of such a system we demonstrate both conciseness of policy representation and automatic policy parameter learning for a set of canonical reinforcement learning problems.