Black-box policy search with probabilistic programs
In this work we show how to represent policies as programs: that is, as stochastic simulators with tunable parameters. To learn the parameters of such policies we develop connections between black box variational inference and existing policy search approaches. We then explain how such learning can...
Κύριοι συγγραφείς: | Van De Meent, J, Paige, B, Tolpin, D, Wood, F |
---|---|
Μορφή: | Conference item |
Έκδοση: |
Journal of Machine Learning Research
2016
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
ανά: Tolpin, D, κ.ά.
Έκδοση: (2015) -
Maximum a posteriori estimation by search in probabilistic programs
ανά: Tolpin, D, κ.ά.
Έκδοση: (2015) -
Bayesian Optimization for Probabilistic Programs
ανά: Rainforth, T, κ.ά.
Έκδοση: (2016) -
Particle Gibbs with Ancestor Sampling for Probabilistic Programs
ανά: van de Meent, J, κ.ά.
Έκδοση: (2015) -
Particle Gibbs with ancestor sampling for probabilistic programs
ανά: Meent, J, κ.ά.
Έκδοση: (2015)