Black-box policy search with probabilistic programs
In this work we show how to represent policies as programs: that is, as stochastic simulators with tunable parameters. To learn the parameters of such policies we develop connections between black box variational inference and existing policy search approaches. We then explain how such learning can...
Үндсэн зохиолчид: | Van De Meent, J, Paige, B, Tolpin, D, Wood, F |
---|---|
Формат: | Conference item |
Хэвлэсэн: |
Journal of Machine Learning Research
2016
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
-н: Tolpin, D, зэрэг
Хэвлэсэн: (2015) -
Maximum a posteriori estimation by search in probabilistic programs
-н: Tolpin, D, зэрэг
Хэвлэсэн: (2015) -
Bayesian Optimization for Probabilistic Programs
-н: Rainforth, T, зэрэг
Хэвлэсэн: (2016) -
Particle Gibbs with Ancestor Sampling for Probabilistic Programs
-н: van de Meent, J, зэрэг
Хэвлэсэн: (2015) -
Particle Gibbs with ancestor sampling for probabilistic programs
-н: Meent, J, зэрэг
Хэвлэсэн: (2015)