Black-box policy search with probabilistic programs
In this work we show how to represent policies as programs: that is, as stochastic simulators with tunable parameters. To learn the parameters of such policies we develop connections between black box variational inference and existing policy search approaches. We then explain how such learning can...
Hoofdauteurs: | Van De Meent, J, Paige, B, Tolpin, D, Wood, F |
---|---|
Formaat: | Conference item |
Gepubliceerd in: |
Journal of Machine Learning Research
2016
|
Gelijkaardige items
-
Output-sensitive Adaptive Metropolis-Hastings for probabilistic programs
door: Tolpin, D, et al.
Gepubliceerd in: (2015) -
Maximum a posteriori estimation by search in probabilistic programs
door: Tolpin, D, et al.
Gepubliceerd in: (2015) -
Bayesian Optimization for Probabilistic Programs
door: Rainforth, T, et al.
Gepubliceerd in: (2016) -
Particle Gibbs with Ancestor Sampling for Probabilistic Programs
door: van de Meent, J, et al.
Gepubliceerd in: (2015) -
Particle Gibbs with ancestor sampling for probabilistic programs
door: Meent, J, et al.
Gepubliceerd in: (2015)