Carrier dynamics in ion-implanted GaAs studied by simulation and observation of terahertz emission

We have experimentally measured the terahertz radiation from a series of ion-implanted semiconductors, both from the bare semiconductor surface and from photoconductive switches fabricated on them. GaAs was implanted with As + ions, and InGaAs and InP with Fe+ ions, and all samples were annealed pos...

Full description

Bibliographic Details
Main Authors: Lloyd-Hughes, J, Castro-Camus, E, Fraser, MD, Jagadish, C, Johnston, M
Format: Journal article
Language:English
Published: 2004
Description
Summary:We have experimentally measured the terahertz radiation from a series of ion-implanted semiconductors, both from the bare semiconductor surface and from photoconductive switches fabricated on them. GaAs was implanted with As + ions, and InGaAs and InP with Fe+ ions, and all samples were annealed post implantation. An increase in emission power is observed at high frequencies, which we attribute to the ultrafast trapping of carriers. We use a three-dimensional carrier dynamics simulation to model the emission process. The simulation accurately predicts the experimentally observed bandwidth increase, without resorting to any fitting parameters. Additionally, we discuss intervalley scattering, the influence of space-charge fields, and the relative performance of InP, GaAs and In As based photoconductive emitters.