Interpolating convolutional neural networks using batch normalization
Perceiving a visual concept as a mixture of learned ones is natural for humans, aiding them to grasp new concepts and strengthening old ones. For all their power and recent success, deep convolutional networks do not have this ability. Inspired by recent work on universal representations for neural...
Автори: | Data, G, Ngu, K, Murray, D, Prisacariu, V |
---|---|
Формат: | Conference item |
Опубліковано: |
Springer
2018
|
Схожі ресурси
Схожі ресурси
-
Early Earthquake Detection Using Batch Normalization Graph Convolutional Neural Network (BNGCNN)
за авторством: Muhammad Atif Bilal, та інші
Опубліковано: (2022-07-01) -
Convolution neural network with batch normalization and inception-residual modules for Android malware classification
за авторством: TianYue Liu, та інші
Опубліковано: (2022-08-01) -
Development of Deep Convolutional Neural Network with Adaptive Batch Normalization Algorithm for Bearing Fault Diagnosis
за авторством: Chao Fu, та інші
Опубліковано: (2020-01-01) -
Multiple Sclerosis Identification by 14-Layer Convolutional Neural Network With Batch Normalization, Dropout, and Stochastic Pooling
за авторством: Shui-Hua Wang, та інші
Опубліковано: (2018-11-01) -
Reconstruction and Localization of Tumors in Breast Optical Imaging via Convolution Neural Network Based on Batch Normalization Layers
за авторством: Nazish Murad, та інші
Опубліковано: (2022-01-01)