Auto-encoding sequential Monte Carlo
We build on auto-encoding sequential Monte Carlo (AESMC): a method for model and proposal learning based on maximizing the lower bound to the log marginal likelihood in a broad family of structured probabilistic models. Our approach relies on the efficiency of sequential Monte Carlo (SMC) for perfor...
Главные авторы: | Le, T, Igl, M, Rainforth, T, Jin, T, Wood, F |
---|---|
Формат: | Conference item |
Опубликовано: |
OpenReview
2018
|
Схожие документы
-
Monte Carlo variational auto-encoders
по: Thin, A, и др.
Опубликовано: (2021) -
Amortized Monte Carlo integration
по: Goliński, A, и др.
Опубликовано: (2019) -
On nesting Monte Carlo estimators
по: Rainforth, T, и др.
Опубликовано: (2019) -
Sequential Monte Carlo with transformations
по: Everitt, RG, и др.
Опубликовано: (2019) -
Sequential Monte Carlo samplers
по: Del Moral, P, и др.
Опубликовано: (2006)