The antitriangular factorization of saddle point matrices
Mastronardi and Van Dooren [SIAM J. Matrix Anal. Appl., 34 (2013), pp. 173–196] recently introduced the block antitriangular (“Batman”) decomposition for symmetric indefinite matrices. Here we show the simplification of this factorization for saddle point matrices and demonstrate how it represents t...
Auteurs principaux: | Pestana, J, Wathen, A |
---|---|
Format: | Journal article |
Publié: |
Society for Industrial and Applied Mathematics
2014
|
Documents similaires
-
The antitriangular factorisation of saddle point matrices
par: Pestana, J, et autres
Publié: (2013) -
Approximate factorization constraint preconditioners for saddle-point matrices
par: Dollar, H, et autres
Publié: (2006) -
Incomplete factorization constraint preconditioners for saddle-point matrices
par: Dollar, H, et autres
Publié: (2004) -
Natural preconditioners for saddle point systems
par: Pestana, J, et autres
Publié: (2013) -
On the eigenvalues and eigenvectors of nonsymmetric saddle point matrices preconditioned by block triangular matrices
par: Pestana, J
Publié: (2013)