Zeta elements in depth 3 and the fundamental Lie algebra of the infinitesimal Tate curve

This paper draws connections between the double shuffle equations and structure of associators; universal mixed elliptic motives as defined by Hain and Matsumoto; and the Rankin-Selberg method for modular forms for $SL_2(\mathbb{Z})$. We write down explicit formulae for zeta elements $\sigma_{2n-1}$...

Full description

Bibliographic Details
Main Author: Brown, F
Format: Journal article
Published: Cambridge University Press 2017