Zeta elements in depth 3 and the fundamental Lie algebra of the infinitesimal Tate curve
This paper draws connections between the double shuffle equations and structure of associators; universal mixed elliptic motives as defined by Hain and Matsumoto; and the Rankin-Selberg method for modular forms for $SL_2(\mathbb{Z})$. We write down explicit formulae for zeta elements $\sigma_{2n-1}$...
Hlavní autor: | |
---|---|
Médium: | Journal article |
Vydáno: |
Cambridge University Press
2017
|