Zeta elements in depth 3 and the fundamental Lie algebra of the infinitesimal Tate curve
This paper draws connections between the double shuffle equations and structure of associators; universal mixed elliptic motives as defined by Hain and Matsumoto; and the Rankin-Selberg method for modular forms for $SL_2(\mathbb{Z})$. We write down explicit formulae for zeta elements $\sigma_{2n-1}$...
Hlavní autor: | Brown, F |
---|---|
Médium: | Journal article |
Vydáno: |
Cambridge University Press
2017
|
Podobné jednotky
-
ZETA ELEMENTS IN DEPTH 3 AND THE FUNDAMENTAL LIE ALGEBRA OF THE INFINITESIMAL TATE CURVE
Autor: FRANCIS BROWN
Vydáno: (2017-01-01) -
A Tannakian Interpretation of the Elliptic Infinitesimal Braid Lie Algebras
Autor: Enriquez, Benjamin, a další
Vydáno: (2018) -
New Applications of a Kind of Infinitesimal-Operator Lie Algebra
Autor: Honwah Tam, a další
Vydáno: (2016-01-01) -
Locally Homogeneous Manifolds Defined by Lie Algebra of Infinitesimal Affine Transformations
Autor: Vladimir A. Popov
Vydáno: (2022-12-01) -
Motivic zeta functions of infinite-dimensional Lie algebras
Autor: Du Sautoy, M, a další
Vydáno: (2004)