Zeta elements in depth 3 and the fundamental Lie algebra of the infinitesimal Tate curve

This paper draws connections between the double shuffle equations and structure of associators; universal mixed elliptic motives as defined by Hain and Matsumoto; and the Rankin-Selberg method for modular forms for $SL_2(\mathbb{Z})$. We write down explicit formulae for zeta elements $\sigma_{2n-1}$...

Mô tả đầy đủ

Chi tiết về thư mục
Tác giả chính: Brown, F
Định dạng: Journal article
Được phát hành: Cambridge University Press 2017