Genus two curves with full √3-level structure and Tate-Shafarevich groups
<p>We give an explicit rational parameterization of the surface <strong><em>H</em><sub>3</sub></strong> over ℚ whose points parameterize genus 2 curves <em>C</em> with full √3-level structure on their Jacobian <em>J</em>. We...
Главные авторы: | Bruin, N, Flynn, EV, Shnidman, A |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Springer
2023
|
Схожие документы
-
Arbitrarily large p-torsion in Tate-Shafarevich groups
по: Flynn, E, и др.
Опубликовано: (2024) -
Arbitrarily large Tate–Shafarevich group on Abelian surfaces
по: Flynn, E
Опубликовано: (2017) -
Modeling the distribution of ranks, Selmer groups, and Shafarevich–Tate groups of elliptic curves
по: Bhargava, Manjul, и др.
Опубликовано: (2017) -
Arbitrarily large 2-torsion in Tate-Shafarevich groups of Abelian varieties
по: Flynn, E
Опубликовано: (2019) -
Modular curves, the Tate-Shafarevich group and Gopakumar-Vafa invariants with discrete charges
по: Thorsten Schimannek
Опубликовано: (2022-02-01)