Adjusting the effect of nonstationarity in cluster-based and TFCE inference.
In nonstationary images, cluster inference depends on the local image smoothness, as clusters tend to be larger in smoother regions by chance alone. In order to correct the inference for such nonstationary, cluster sizes can be adjusted according to a local smoothness estimate. In this study, adjust...
Asıl Yazarlar: | Salimi-Khorshidi, G, Smith, S, Nichols, T |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
2011
|
Benzer Materyaller
-
Adjusting the neuroimaging statistical inferences for nonstationarity.
Yazar:: Salimi-Khorshidi, G, ve diğerleri
Baskı/Yayın Bilgisi: (2009) -
Adjusting the neuroimaging statistical inferences for nonstationarity.
Yazar:: Salimi-Khorshidi, G, ve diğerleri
Baskı/Yayın Bilgisi: (2009) -
Adjusting the neuroimaging statistical inferences for nonstationarity.
Yazar:: Salimi-Khorshidi, G, ve diğerleri
Baskı/Yayın Bilgisi: (2009) -
Comparison of a non-stationary voxelation-corrected cluster-size test with TFCE for group-Level MRI inference
Yazar:: Li, H, ve diğerleri
Baskı/Yayın Bilgisi: (2016) -
Probabilistic TFCE: A generalized combination of cluster size and voxel intensity to increase statistical power
Yazar:: Spisák, T, ve diğerleri
Baskı/Yayın Bilgisi: (2018)