Triple-view feature learning for medical image segmentation

Deep learning models, e.g. supervised Encoder-Decoder style networks, exhibit promising performance in medical image segmentation, but come with a high labelling cost. We propose TriSegNet, a semi-supervised semantic segmentation framework. It uses triple-view feature learning on a limited amount of...

Повний опис

Бібліографічні деталі
Автори: Wang, Z, Voiculescu, ID
Формат: Conference item
Мова:English
Опубліковано: Springer 2022