FedHarmony: unlearning scanner bias with distributed data
The ability to combine data across scanners and studies is vital for neuroimaging, to increase both statistical power and the representation of biological variability. However, combining datasets across sites leads to two challenges: first, an increase in undesirable non-biological variance due to s...
Hlavní autoři: | Dinsdale, N, Jenkinson, M, Namburete, A |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
Springer
2022
|
Podobné jednotky
-
Unlearning scanner bias for MRI harmonisation
Autor: Dinsdale, NK, a další
Vydáno: (2020) -
Unlearning scanner bias for MRI harmonisation in medical image segmentation
Autor: Dinsdale, NK, a další
Vydáno: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal.
Autor: Dinsdale, NK, a další
Vydáno: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal
Autor: Nicola K. Dinsdale, a další
Vydáno: (2021-03-01) -
SFHarmony: source free domain adaptation for distributed neuroimaging analysis
Autor: Dinsdale, NK, a další
Vydáno: (2024)