FedHarmony: unlearning scanner bias with distributed data

The ability to combine data across scanners and studies is vital for neuroimaging, to increase both statistical power and the representation of biological variability. However, combining datasets across sites leads to two challenges: first, an increase in undesirable non-biological variance due to s...

Бүрэн тодорхойлолт

Номзүйн дэлгэрэнгүй
Үндсэн зохиолчид: Dinsdale, N, Jenkinson, M, Namburete, A
Формат: Conference item
Хэл сонгох:English
Хэвлэсэн: Springer 2022

Ижил төстэй зүйлс