FedHarmony: unlearning scanner bias with distributed data
The ability to combine data across scanners and studies is vital for neuroimaging, to increase both statistical power and the representation of biological variability. However, combining datasets across sites leads to two challenges: first, an increase in undesirable non-biological variance due to s...
Үндсэн зохиолчид: | Dinsdale, N, Jenkinson, M, Namburete, A |
---|---|
Формат: | Conference item |
Хэл сонгох: | English |
Хэвлэсэн: |
Springer
2022
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Unlearning scanner bias for MRI harmonisation
-н: Dinsdale, NK, зэрэг
Хэвлэсэн: (2020) -
Unlearning scanner bias for MRI harmonisation in medical image segmentation
-н: Dinsdale, NK, зэрэг
Хэвлэсэн: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal.
-н: Dinsdale, NK, зэрэг
Хэвлэсэн: (2020) -
Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal
-н: Nicola K. Dinsdale, зэрэг
Хэвлэсэн: (2021-03-01) -
SFHarmony: source free domain adaptation for distributed neuroimaging analysis
-н: Dinsdale, NK, зэрэг
Хэвлэсэн: (2024)